COMPACT NEAR-NAVIGATION-GRADE IFOG INERTIAL MEASUREMENT UNIT IMU400

Yu.N. Korkishko, V.A. Fedorov, S.V. Prilutskiy, D.V. Obuhovich, <u>I.V. Fedorov,</u> V.E. Prilutskiy, V.G. Ponomarev, A.I. Zuev, V.K. Varnakov, I.V. Morev, S.M.Kostritskii

F Contract Solution

OPTOLINK RPC LLC, Moscow, Russia

Fiber Optical Solution, Riga, Latvia

Outline:

- **1. Optolink's production capacities & premises**
- 2. IMU400 c-SWaP & mechanical properties; accuracy & specs
- 3. MEMS accelerometers SF non-linearity & delay evaluation
- 4. IMU postprocessing results: gyrocompassing & static; track navigation
- 5. Conclusion

From optical components to navigation systems

LLC RPC «Optolink», Sosnovaya alley, d. 6A, building 5, module 3-1, Zelenograd, Moscow, 124489, Russian Federation Telephone: +7(495) 663-17-60; Fax: +7(495) 663-17-61; Web-site: www.optolink.ru; E-mail: opto@optolink.ru

Inertial Sensors and Systems

Symposium Gyro Technology

1. Optolink's production capacities & premises

<u>Headquarters</u> Moscow, Zelenograd

Development and production of integrated optical circuits on LiNbO₃, fiber-optic sensors and inertial navigation systems.

Arzamas branch

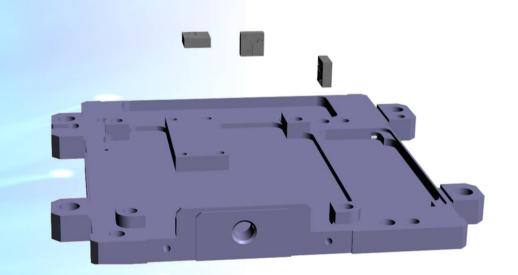
Production of **special optical fibers** (PM, spun, etc.) and components.

Saratov branch

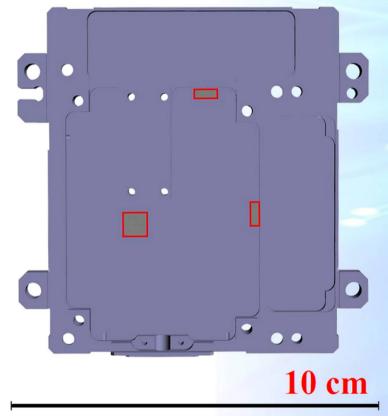
Development and production of **fiber-optic gyroscopes** and sensors

2a. IMU400 c-SWaP & mechanical properties

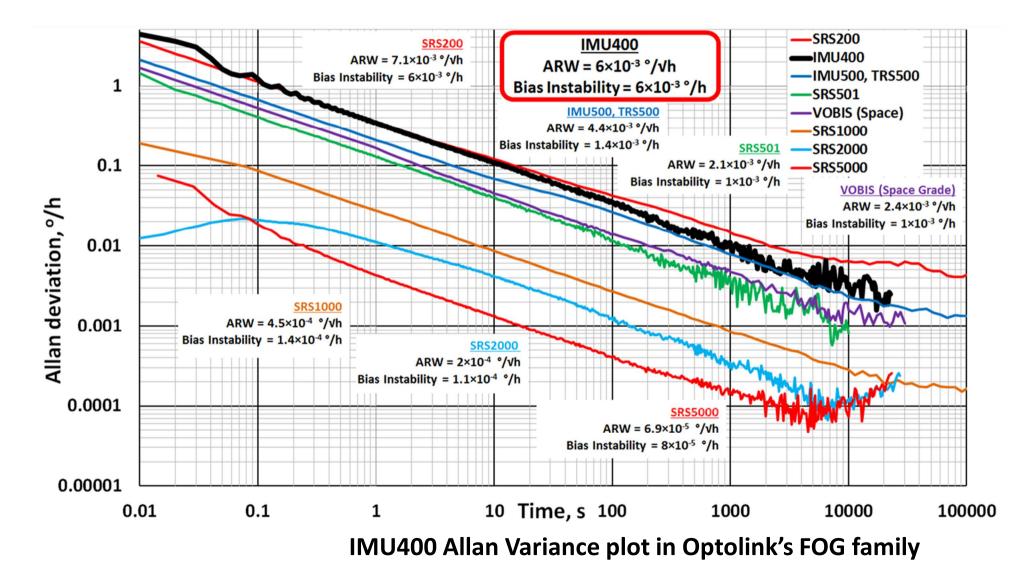
80×95×62 mm, 0.7 kg, 0.5 l, ≤7 W



From optical components to navigation systems


LLC RPC «Optolink», Sosnovaya alley, d. 6A, building 5, module 3-1, Zelenograd, Moscow, 124489, Russian Federation Telephone: +7(495) 663-17-60; Fax: +7(495) 663-17-61; Web-site: www.optolink.ru; E-mail: opto@optolink.ru

2a. IMU400 c-SWaP & mechanical properties



Spatial displacement of 3 physical MEMS-accelerometer triads inside the IMU400

OPTOLINK RPC LLC, Moscow, Russia **Fiber Optical Solution, Riga, Latvia**

2b. Sensors accuracy and specs

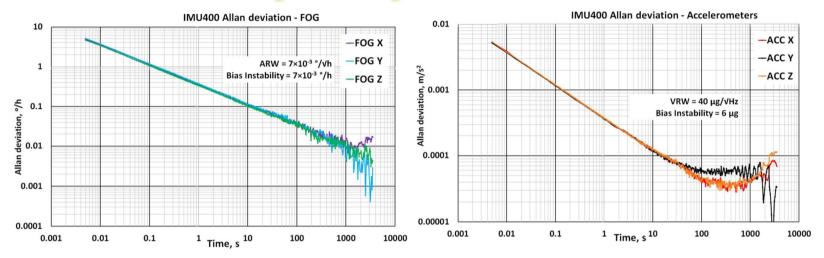
OPTOLINK RPC LLC, Moscow, Russia

Fiber Optical Solution, Riga, Latvia

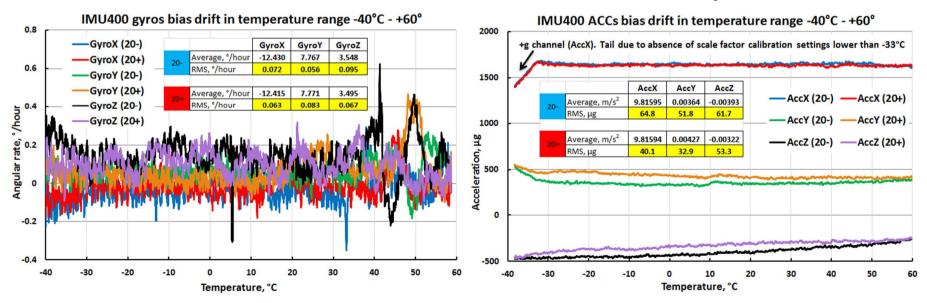
Accolonometone

2b. Sensors accuracy and specs

		Accelerometers					
		Range, g	±10				
		Bias drift at constant temperature, mg	1				
	-	Bias drift in operational temperature	1.0 (*0.4)				
Performance	IMU400	range, mg					
Gyro		Scale factor error, ppm	500 (*300)				
Angular rate range, °/s	±550	Noise power density, mg/ √Hz	0.08				
Bias drift at constant temperature		Bandwidth, Hz	> 300				
(1σ, 100s-averaging), °/h	0.1	Physical Characteristics					
Bias drift (10, 100s-averaging) in	0.7 (*0.2)	Misalignment, °	0.08 (*0.015)				
operational temperature range, °/h	0.7 (*0.3)	Output sample rate, Hz	up to 2000				
Angle random walk, ⁰/ √h	0.01	Power supply, V / Consumption, W	5 / 7				
Scale factor error, ppm	500 (*200)	Digital output interface	RS-422				
Bandwidth, Hz	> 1000	Operational temperature range, °C	- 40 ~ +60				
		Dimensions, mm	80 × 95 × 62				
		Weight, kg	0.7				


*precise calibration (optional)

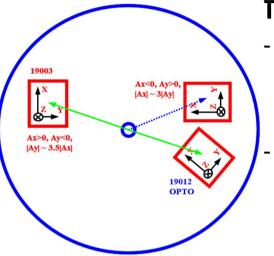
From optical components to navigation systems


LLC RPC «Optolink», Sosnovaya alley, d. 6A, building 5, module 3-1, Zelenograd, Moscow, 124489, Russian Federation Telephone: +7(495) 663-17-60; Fax: +7(495) 663-17-61; Web-site: www.optolink.ru; E-mail: opto@optolink.ru

OPTOLINK RPC LLC, Moscow, Russia Fiber Optical Solution, Riga, Latvia

2b. Sensors accuracy and specs

IMU400 FOG and ACC channels Allan variance plot



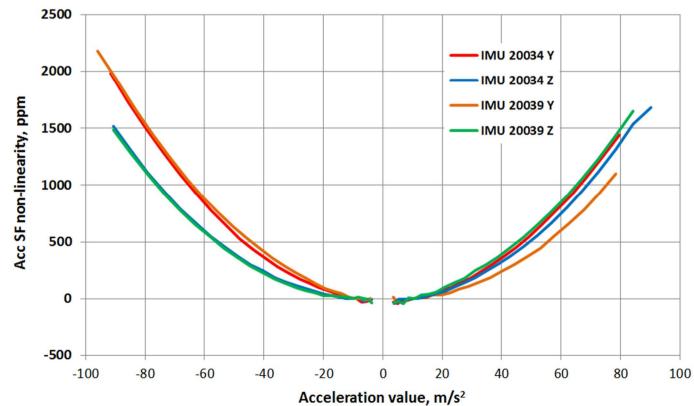
IMU400 Gyroscopes & Accelerometers bias plots in temperature range

3a. MEMS accelerometers SF non-linearity

Test setup design:

- Precise rate table (self-made at Optolink) with multiple mounting holes 2 IMUs in tests, balanced wrt center.
 Effective radii ~10-13cm. Rotation rate up to 2000°/s.
- IMU positioning not only with definite (a) axes along centripetal, but with random (b) acceleration distribution over channels – for even estimation of 3-axis MEMS sensors

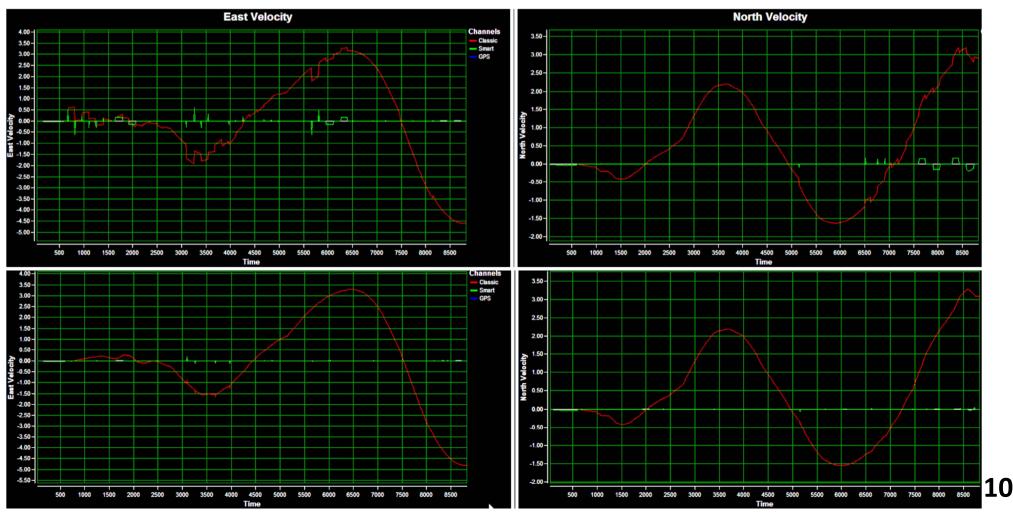
(a) IMUs with definite (-Z) axes along centripetal acceleration


(b) random acceleration distribution over channels

3a. MEMS accelerometers SF non-linearity

Results - for random IMU positioning (b):

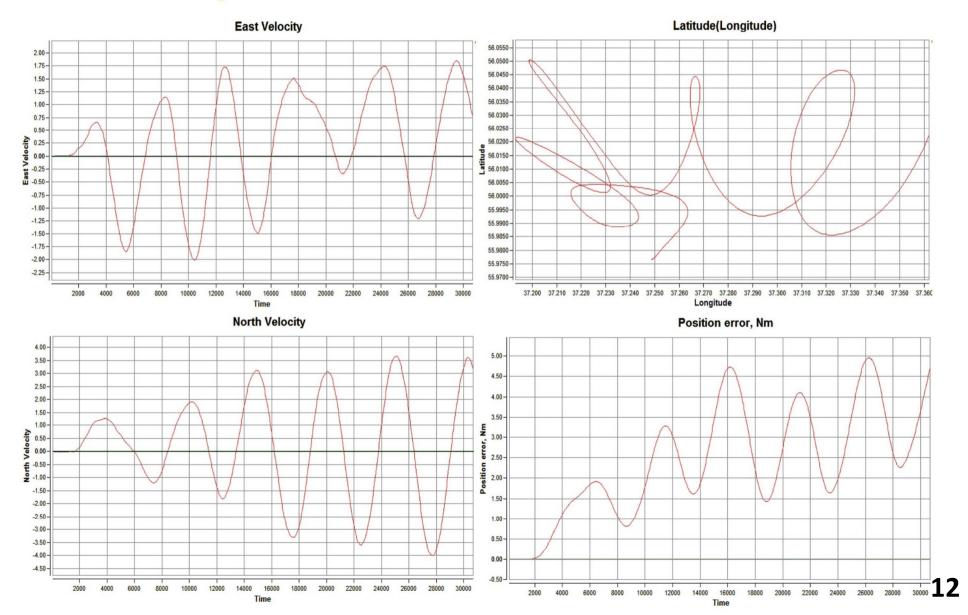
- Accelerometers have predictable non-linearity pattern which can be compensated, if needed. May be asymmetric.
- Errors scale is ~2000ppm non-linearity error at ±10g. -
- However, at ±2g <100ppm. Therefore, for the civic/marine range of applications, no need to compensate. Accelerometer Scale factor non-linearity



OPTOLINK RPC LLC, Moscow, Russia Fiber Optical Solution, Riga, Latvia

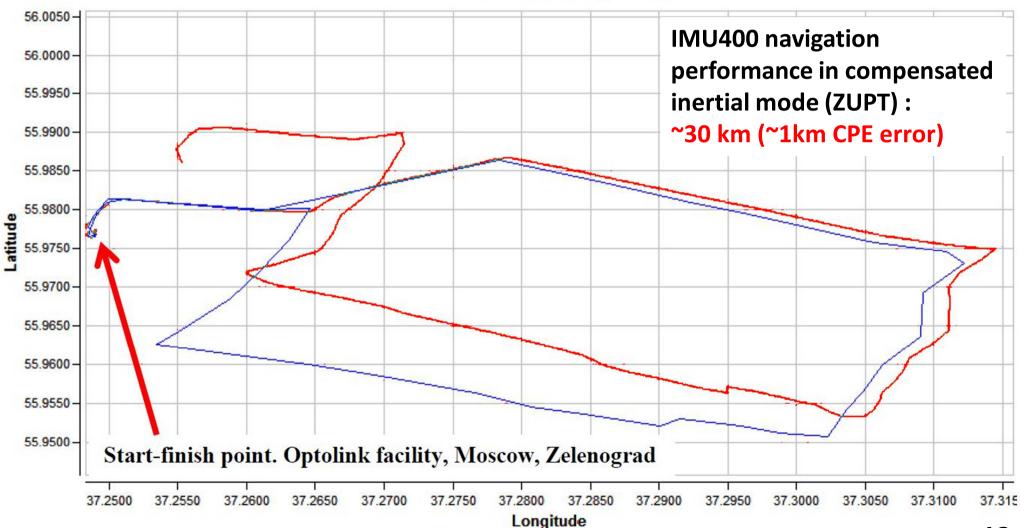
3b. MEMS accelerometers delay

- Initial IMU400 design showed measurement delay between Gyro/Acc triads as whole (upper image, 2019-year IMU400 calibration launch, inertial velocities).
- In 2020, we improved schematics to get rid of the delay and thus making inertial behavior better (lower image, removing delays in post-processing).

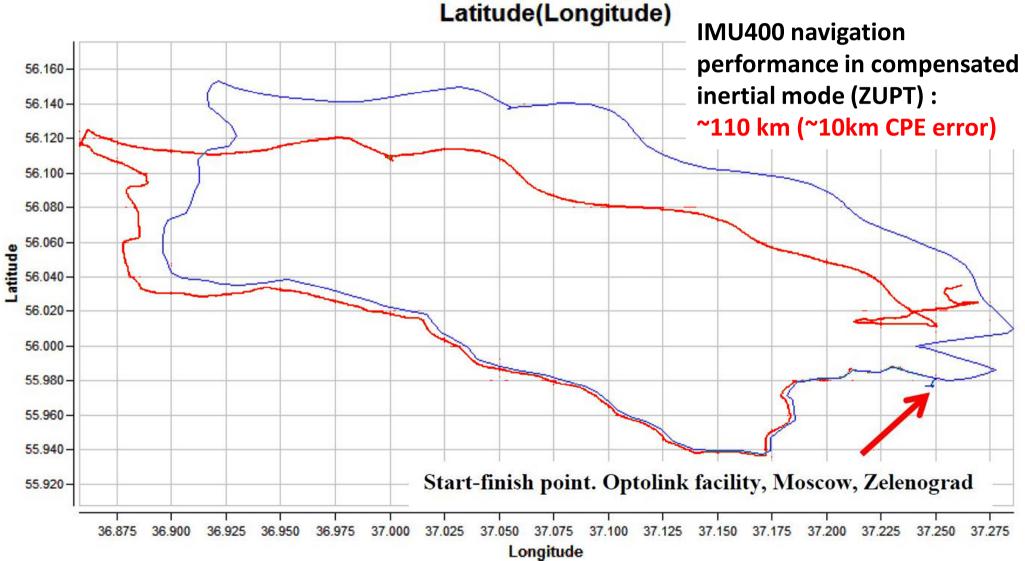

4a. Test results, gyrocompassing

Heading												A١	/erage	Disp	ersion	RMS	for	
•	1	c .	2		3	4		5		6		for		for		Heading, °		
0	0.1	95	0.034	. (0.380	0.002		0.098		0.279		0	.1647	0.0452		0.21	2	
90	90.3	39	90.51	39	0.541	41 90.2		6 90.051		90.398		90.3531		0.1514		0.38	9	
180	179.	857	179.60	5 17	179.770		179.926		179.778		179.731		179.7779		0.0594		4	
270			-															
270	70 269.555		269.79	8 26	269.531 26		69.476 26		.569 2		269.804 2		9.6221	0.1597		0.40	0	
0	0.011 -0.19		2 -1	-0.278 -0		-0.023		0.145		0.115		-0.0226		0.0211		5		
		Bias, °/hour						At 56° N Lat.						Total disp. <mark>Total R</mark>		<mark>≀MS</mark>		
		X		Y	Z						IN La		•	0.0979		0.31	3	
te	test1 0.028 0.054 -0.019			19														
te	test2		36 0	040	40 0.008			Cardinal direction										
								0°	90	90° 180		0° 270°		C)°	Average		
	RMS (Mean-shifted), °						° (0.147	0.1	79	0.110		0.142	0.1	153	0.146	6	

11



4a. Test results, static – 5Nm at 8h


4b. Test results – track navigation 1

Latitude(Longitude)

4b. Test results – track navigation 2

5. Conclusion

Demonstrated performance allows to assess IMU400 as navigation or near-navigation grade IMU with unique combination of performance / cost / SWaP characteristics.

> 100 units already delivered to customers (2019.06 till now)

From optical components to navigation systems

LLC RPC «Optolink», Sosnovaya alley, d. 6A, building 5, module 3-1, Zelenograd, Moscow, 124489, Russian Federation Telephone: +7(495) 663-17-60; Fax: +7(495) 663-17-61; Web-site: www.optolink.ru; E-mail: opto@optolink.ru

Inertial Sensors and Systems Symposium Gyro Technology

