УДК 531.383-11:681.7

В. Е. ПРИЛУЦКИЙ , В. Г. ПОНОМАРЕВ , В. Г. МАРЧУК , М. А. ФЕНЮК , Ю. Н. КОРКИШКО , В. А. ФЕДОРОВ , С. М. КОСТРИЦКИЙ , Е. М. ПАДЕРИН , А. И. ЗУЕВ

ИНТЕРФЕРОМЕТРИЧЕСКИЕ ВОЛОКОННО-ОПТИЧЕСКИЕ ГИРОСКОПЫ С ЛИНЕЙНЫМ ВЫХОДОМ

Описаны одноосный и трехосный волоконно-оптические гироскопы, изготавливаемые на предприятии «Оптолинк». Представлены технологические процессы и потенциальная возможность реализации требований как к недорогим и компактным приборам для тактических задач управления, так и к системам инерциальной навигации. Рассмотрены оптические и электронные блоки гироскопов с замкнутым контуром обратной связи и интегрально-оптическими компонентами.

Введение

Интерферометрические волоконно-оптические гироскопы (ВОГ) хорошо известны как датчики угловой скорости, принцип действия которых основан на эффекте Саньяка [1]. Разработки последних лет поставили их в ряд приборов, удовлетворяющих самому широкому диапазону требований. Как и кольцевые лазерные гироскопы, ВОГ – надежные и долгоживущие приборы в жестких условиях эксплуатации из-за отсутствия вращающихся частей. Кроме того, у ВОГ отсутствует необходимость в высоковольтном питании и исключения взаимной синхронизации встречных волн, а также существует возможность более легкого достижения малых уровней квантования по углу.

Разработки ВОГ для нужд как высокоточной инерциальной навигации, так и объектов среднего класса точности, например для истребителей-перехватчиков, уже показали, что такие датчики угловой скорости вращения обладают уникальными возможностями [2]. На предприятии «Оптолинк» проведены разработки и конструирование, начато промышленное изготовление семейства ВОГ с замкнутым контуром обратной связи. Разработаны одноосные и трехосный ВОГ трех различных классов точности: класс 0,01-0,1 град/ч для высокоточной нави-

Зуев Александр Иванович (1958). Директор Арзамасского отделения ООО «Оптолинк».

Прилуцкий Виктор Евстафьевич (1947). Директор отделения волоконно-оптической гироскопии ООО «Оптолинк» (Москва).

Пономарев Владимир Григорьевич (1945). Кандидат технических наук, ведущий конструктор отделения волоконно-оптической гироскопии ООО «Оптолинк».

Марчук Владимир Григорьевич (1946). Ведущий инженер-электроник отделения волоконнооптической гироскопии ООО «Оптолинк».

Фенюк Михаил Анатольевич (1962). Ведущий инженер-электроник отделения волоконнооптической гироскопии ООО «Оптолинк».

Коркишко Юрий Николаевич (1960). Доктор физико-математических наук, генеральный директор ООО «Оптолинк».

Федоров Вячеслав Александрович (1967). Доктор физико-математических наук, технический директор ООО «Оптолинк».

Кострицкий Сергей Михайлович (1958). Кандидат физико-математиеских наук, начальник отдела новых разработок ООО «Оптолинк».

Падерин Евгений Михайлович (1964). Главный технолог ООО «Оптолинк».

Статья по докладу на XI Санкт-Петербургской международной конференции по интегрированным навигационным системам.

гации, класс 0,1-1 град/ч для тактических задач и средний класс 1-10 град/ч. Работа приборов в области нулевых значений разности фаз и цифровой выход обеспечивают более высокую точность масштабного коэффициента и более широкий линейный диапазон чем у прототипов с открытым контуром, делая их привлекательными для многих применений.

Одноосные гироскопы

Конфигурация

Разработанные одноосные ВОГ имеют минимальную конфигурацию (рис. 1), которая обеспечивает взаимность оптических путей для двух световых волн, распространяющихся навстречу друг другу в волоконном контуре. ВОГ состоит из источника света, фотодетектора, 1:1 волоконного делителя света, кольцевого интерферометра, чувствительного к угловой скорости, и блока электроники, осуществляющего энергоснабжение элементов ВОГ, обработку сигналов с фотодетектора и управление фазовыми модуляторами.

Кольцевой интерферометр состоит из многофункционального интегральнооптического элемента (МИОЭ) и из волоконного контура (ВК), сохраняющего состояние поляризации света. МИОЭ выполняет три функции:

- 1) сохранение поляризации проходящего света в целях уменьшения нестабильности смещения нуля из-за поляризационной невзаимности;
- расщепление излучения суперлюминесцентного диода (СЛД) на две встречно бегущие в ВК световые волны с равными мощностями с последующей рекомбинацией на У-разветвителе;
- 3) внесение фазового сдвига между встречными волнами с помощью электрооптического фазового модулятора.

Применение волокна, сохраняющего состояние поляризации, обусловлено необходимостью уменьшения дрейфа, вызываемого перекрестной поляризационной связью, и влияния внешних магнитных полей вследствие эффекта Фарадея.

Рис. 1. Минимальная конфигурация одноосного гироскопа: СЛД – суперлюминесцентный диод, ДП – деполяризатор, ВР - волоконный разветвитель,

ФП – фотоприемник, МИОЭ – многофункциональный интегрально-оптический элемент, ВК - волоконный контур

В одноосных ВОГ, разработанных на предприятии «Оптолинк», широкополосные фазовые модуляторы, расположенные на обоих плечах МИОЭ, используются для внесения пилообразной фазовой модуляции, обеспечивая работу приборов в режиме замкнутого контура. В этом случае сигнал с фотоприемника (ФП) преобразуется в дискретный сигнал и затем демодулируется. На выходе № 3 (46), 2004 63

демодулятора формируется сигнал рассогласования, который затем интегрируется и используется для получения наклона «пилы», соответствующего скорости вращения. В одной из разработанных схем контур обратной связи замыкается с помощью пилообразной модуляции, имеющей постоянную фазовую амплитуду, равную 2π рад. В этом случае разность фаз Саньяка компенсируется сигналом с частотой f, определяемой соотношением [1]

$$f = \frac{D}{n\lambda} \Omega, \qquad (1)$$

где Ω – скорость вращения; D – диаметр ВК; n – эффективный показатель преломления моды в волокне; λ – длина волны света.

Частота следования спадов «пилы» является, таким образом, цифровой мерой скорости вращения, причем появление каждого спада соответствует приращению угла поворота ВОГ на $\frac{n\lambda}{D}$ рад.

Оптический блок одноосных ВОГ

Точность ВОГ зависит от параметров оптического блока (ОБ). Шум прибора тем меньше, чем больше выходная мощность СЛД и чем меньше потери оптических элементов, включая волокно типа PANDA, сохраняющее состояние поляризации.

Минимальная измеряемая скорость вращения зависит от коэффициента перекрестной поляризационной связи (*h*-параметра) и длины поляризационных биений *L*_p волокна следующим образом [4]:

$$\Omega_{\min} \sim \frac{\sqrt{hL_p}}{DL} \ . \tag{2}$$

Поэтому при разработке ВОГ основные усилия были направлены на уменьшение оптических потерь в каждом из элементов и на уменьшение величин h и L_p в волоконных светодоводов типа PANDA. В табл. 1 представлены параметры изготавливаемых на предприятии «Оптолинк» волоконных световодов, сохраняющих состояние поляризации света.

Т	а	б	л	И	ц	а	1
---	---	---	---	---	---	---	---

Параметры волоконных световодов, изготавливаемого на предприятии «Оптолинк»

Рабочая длина волны, мкм	0,83	1,55		
Диаметр модового поля, мкм	4,5	6,5		
Диаметр волокна, мкм	80			
Диаметр покрытия, мкм	120÷160			
Числовая апертура	0,15	0,13		
<i>h</i> -параметр	<10 ⁻⁵ /м			
Потери, дБ/км	< 3	< 2		
Длина волны отсечки, нм	680 - 780	1250 - 1450		
Длина биений, мм	<3			
Тип	PANDA			

На предприятии разработаны четыре модификации одноосных ВОГ, имеющие ВК с длинами 200 м (SRS-200), 500 м (SRS-500), 1000 м (SRS-1000), 2000 м (SRS-2000). Намотка катушек ведется по квадрупольной технологии, начиная от середины длины отрезка волокна в направлении наружу к его концам путем поочередного сматывания с двух вспомогательных шпулек и формированием геометрически симметричной структуры. Волокно является и эластичным и очень хрупким. Эластичность требует поддерживать постоянным натяжение волокна в течение всего процесса намотки. Хрупкость требует контролировать не только натяжение волокна, но и его изгибы или искривления, а также поверхностные контакты. Катушка с волокном располагается на теплоизолированной плате с диаметром от 80 до 230 мм в зависимости от типа ВОГ (табл. 2 и 3).

Параметры одноосных ВОГ

Таблица 2

Таблица З

Параметр	SRS-2000	SRS-1000	SRS-500	SRS-200
Диапазон измеряемой угло- вой скорости, град/с	±10	± 30	±100	±200
Скорость дрейфа при посто- янной температуре, град/ч	<0,01	<0,1		<10,0
Погрешность масштабного коэффициента, %	≤ 0,01	$\le 0,02$		\leq 0,05
Полоса пропускания, Гц	>10	10-30	>100	>100
Шум, град/√ч	≤0,001	≤0,003	≤0,005	≤0,01
Длина ВК, м	2000	1000	500	200
Масса, кг	1,2		0,8	
Размеры, мм	Ø 250×40	Ø150×40		
Выход		RS232 Аналог		

Параметры трехосного ВОГ TRS-500

TRS-500 Параметр Диапазон измеряемой угловой скорости, град/с ± 500 Дрейф смещения при постоянной температуре, град/ч <10.0 Погрешность масштабного коэффициента, % ≤ 0.5 Полоса пропускания, Гц От 100 до 500 Шум, град/√ч ≤0,05 Длина ВК, м 500 1,1 Масса, кг 110×110×90 Размеры, мм Потребляемая мощность, Вт <6 Аналоговый и цифровой RS485 Выход

Станки для намотки ВК были специально разработаны на базе стандартных проволочных намоточных станков.

Изотропные волоконные разветвители изготавливаются методом сплавления – вытяжки и имеют следующие типовые значения параметров:

коэффициент деления	50±	:1%;
избыточные потери	0,1	дБ.

За основу конструкторского решения при разработке деполяризатора взята конструкция, известная как волоконный деполяризатор Лайота [5]. Технология изготовления этого элемента обеспечивает достижение следующих параметров:

потери оптической мощности< 0,5 дБ; степень остаточной поляризации излучения при ширине спектральной линии 15 нм......<0,1%.

МИОЭ изготавливаются на кристаллах LiNbO₃ методом высокотемпературного протонного обмена [3]. Этот метод дает возможность достижения следующих значений основных параметров МИОЭ:

Интегрирование МИОЭ в ОБ производится путем непосредственных стыковок его волноводов с концами ВК и с одним из концов входного изотропного разветвителя, имеющего длину, достаточную для пространственной фильтрации излучения.

В качестве источника света в разработанном ВОГ используется излучатель ИЛПН-330-4, изготавливаемый на предприятии "Инжект", г. Саратов. В состав излучателя входят:

полосковый СЛД на основе двойной гетероструктуры в системе GaAs/GaAlAs с изоляцией встречным *p-n* переходом и поглощающим слоем в активной области. Такая конструкция СЛД обеспечивает практически гладкий спектр с полушириной 15-18 Нм и получение мощности излучения до 1,5-2 мВт на выходе встроенного одномодового волоконного световода;

микроохладитель на базе элементов Пельтье для поддержания температуры кристалла СЛД в заданном диапазоне при совместной работе с устройством терморегулирования;

термодатчик для формирования сигнала рассогласования в устройстве терморегулирования;

фотодиод на основе кремниевой *p-i-n* структуры для формирования сигнала управления в стабилизаторе мощности света.

Все элементы, входящие в ИЛПН-330-4, размещены в стандартном герметичном корпусе с электрическими и оптическими гермовыводами.

В качестве приемника излучения используется фотодиод на основе кремниевой *p-i-n* структуры типа ФП1-850К, изготавливаемой на том же предприятии. Фотодиод имеет токовую чувствительность на длине волны $\lambda = 0,835$ мкм не менее 0,3 А/Вт с временем нарастания и спада фронта импульсного сигнала не более 2 нс.

Фотодиод выполнен в герметичном корпусе со встроенным многомодовым волоконным световодом. Решение о работе ВОГ на данном этапе в области длин волн 830 нм основано на том, что наиболее дешевые источники излучения с наивысшей надежностью при массовом изготовлении имеются для этой области длин волн.

Есть два основных источника погрешности масштабного коэффициента:

- 1) конечное время спада;
- 2) нестабильность фазовой амплитуды «пилы» [4].

Чтобы избежать влияния первого фактора используется специальная схема преобразования, благодаря которой время обратного хода пилообразной модуляции исключается из передаточной характеристики ВОГ, а нестабильность фазовой амплитуды минимизируется построением астатической следящей системы, для которой сигналом рассогласования является отклик прибора на периодическое с постоянным периодом тарированное воздействие. Специальная схема независимо от состояния движения ВОГ обеспечивает нулевую ошибку стабилизации амплитуды фазовой «пилы» у значения 2π рад при постоянной скорости вращения и ничтожно малое ее значение в динамике.

Параметры одноосных ВОГ

На рис. 2 представлена реализация выходного сигнала прибора SRS-1000. Некомпенсированный выходной сигнал изображен как функция времени. Скорость дрейфа составляет величину менее 0,1 град/ч.

Рис. 2. Некомпенсированный выходной сигнал SRS-1000 при комнатной температуре

Стабильность смещения нулевого сигнала достигается благодаря применению волокна, поддерживающего поляризацию излучения, и МИОЭ с указанными выше параметрами, а также принятию мер по существенному снижению потерь в местах сварок волокон. В целях минимизации уходов нуля ВОГ, вызываемых смещениями в электрических цепях, обработка информации ведется на переменном сигнале (или цифровым способом) во всех каскадах, кроме одного интегратора главной следящей системы. Этот каскад выполнен на прецизионной микросхеме, у которой смещения нуля во всем температурном диапазоне могут приводить к уходам выходного сигнала не более 0,002 град/ч.

Рис. 3 демонстрирует стабильность смещения прибора SRS-500 в шести запусках.

№ 3 (46), 2004

Одноосные ВОГ находят применение при построении гирокомпасов. В гирокомпасе ВОГ вращают так, чтобы его чувствительная ось могла сканировать горизонтальную проекцию скорости вращения Земли. Для этого ВК располагается перпендикулярно горизонтальной плоскости и равномерно вращается вокруг вертикальной оси. При этом измеряется проекция горизонтальной составляющей скорости Земли на ось чувствительности гироскопа. На выходе ВОГ получается синусоидальный сигнал, в котором нулевые значения соответствуют направлениям на восток или на запад, а максимум и минимум – на север и на юг (рис. 4). Амплитуда этого сигнала пропорциональна горизонтальной составляющей скорости вращения Земли, а его фаза определяет положение оси чувствительности гироскопа относительно плоскости меридиана.

Рис. 4. Выходной сигнал SRS-1000 в зависимости от вращения при работе прибора в режиме гирокомпаса

Трехосный гироскоп

В трехосном ВОГ TRS-500 используется только один источник излучения для всех трех волоконных катушек.

Прибор также имеет минимальную конфигурацию (рис. 5), что гарантирует взаимность оптических путей для двух встречных световых волн в каждом из ВК. В него входит один источник света, один фотодетектор, два разветвителя (1:1 и 1:2) для деления света на три части, три интерферометра, чувствительных к трем ортогональным угловым скоростям, и блок электроники.

Блок электроники вырабатывает три напряжения U_1 , U_2 , и U_3 для формирования пилообразной фазовой модуляции света с целью компенсации разности фаз Саньяка, а также для внесения постоянного фазового сдвига между световыми волнами на $\pi/2$ рад.

В этом случае измеренная угловая скорость определяется соотношением

$$\Omega = \frac{\lambda n}{\pi D} \varphi_{rs} f , \qquad (3)$$

где φ_{rs} и *f* – амплитуда и частота «пилы» соответственно.

Рис. 5. Конфигурация трехосного гироскопа

В трехосном ВОГ частота «пилы» стабилизируется кварцевым резонатором, так что f = const. Следовательно, мерой угловой скорости становится амплитуда пилообразной модуляции $\varphi_{rs} = \frac{\pi D}{\lambda n f} \Omega$. Эта величина определяется напряжени-

ем, прикладываемым к фазовому модулятору. При этом

$$\varphi_{rs} = \mathcal{K}_{\Phi M} U, \qquad (4)$$

где $K_{\Phi M} = \frac{\pi}{V_{\pi}}$ – эффективность фазового модулятора, V_{π} – полуволновое напряжение, а, значит,

$$\mathbf{U} = \frac{V_{\pi}D}{\lambda nf} \Omega \quad . \tag{5}$$

Так как величина V_{π} пропорциональна длине волны λ , то масштабный коэффициент ВОГ становится независимым от λ , что улучшает температурную стабильность параметров прибора.

В приборе реализован способ поочередного переключения модуляции каналов (осей) с частотой 1 кГц. Каждый из трех каналов выдает выходную информацию только в том случае, если на модулятор подан электрический сигнал вспомогательной модуляции, поэтому простым подключением электрических сигналов к соответствующему модулятору в работу включается сначала одна из осей на время \approx 333 мкс, затем другая, потом третья. Далее все циклически повторяется с частотой 1 кГц. При этом все три канала работают идентично и независимо друг от друга, как одноосные схемы с замкнутым контуром обратной связи.

В блоке АЦП аналоговые выходные сигналы A_1 , A_2 и A_3 преобразуются в цифровые D_1 , D_2 и D_3 в виде последовательного интерфейса RS485.

На рис. 6 представлены выходные сигналы прибора TRS-500 как функция времени. Дрейф смещения менее 5 град/ч.

Рис. 6. Некомпенсированный выходной сигнал TRS-500 при комнатной температуре

Трехосный гироскоп TRS-500 чувствителен к скорости вращения Земли и также может быть применен для построения гирокомпаса. На рис. 7 показаны выходные сигналы двух осей X и Y в то время, когда вращение производилось вокруг вертикальной оси Z. Видны два синусоидальных сигнала с фазовым сдвигом $\pi/2$, у которых переходы через нуль соответствуют направлениям на запад и на восток.

Рис. 7. Выходной сигнал TRS-500 в зависимости от вращения при работе прибора в режиме гирокомпаса

Гироскопия и навигация

На рис. 8 представлены результаты тестирования прибора TRS-500 на трехосном поворотном стенде Acutronic в диапазоне угловых скоростей ±100 град/с.

Рис. 8. Выходной сигнал TRS-500 при изменении скорости вращения вокруг одной из осей

Влияние магнитного поля

Оценка влияния магнитного поля на величину ухода нулевого сигнала ВОГ SRS-1000 вследствие эффекта Фарадея была проведена на предприятии «Электроприбор» (Санкт-Петербург). Каждое измерение состояло из шести интервалов с воздействием постоянным полем напряженностью 5 Эрстед. Один интервал отличался от другого изменением знака магнитного поля. Максимальное изменение нулевого сигнала, равное 0,1 град/ч/Эрстед, получено при ориентации поля вдоль оси чувствительности гироскопа. В других направлениях влияние магнитного поля меньше.

Заключение

Представлены результаты разработки и изготовления ВОГ на предприятии «Оптолинк». Разработаны три класса приборов с различными характеристиками. Среди них относительно малогабаритный трехосный ВОГ класса 1-10 град/ч. Работа в области нулевых фазовых сдвигов и наличие как аналогового, так и цифрового выходов обеспечивают бо́льшую точность масштабного коэффициента и динамический диапазон по сравнению с аналогичными приборами открытого типа. Это делает их привлекательными для использования на тактических подвижных объектах. Два других класса ВОГ замкнутого типа имеют порядок точности 1 град/ч и выше. Первый из них от 1,0 до 0,1 град/ч. Также разработаны прецизионные приборы, характеризующиеся уходами нулевого сигнала на уровне лучше чем 0,1 град/ч, или даже лучше чем 0,01 град/ч. Эти два типа приборов могут найти применение на военных и коммерческих судах, в авиации и на спутниковых инерциальных навигационных системах, а также в системах определения направления на север. Прототип спутниковой системы планируется запустить с различными носителями в 2004 г. или в начале 2005 г. Продолжение разработок и инженерные усилия сконцентрированы на выработке решений для одноосных и многоосных приборов с целью уменьшения их размеров и оптимизации стоимости производства.

ЛИТЕРАТУРА

- 1. Lefevre H. The Fiber Optic Gyroscope, Artech House, 1993.
- 2. Ward P.W., Jeerage M. The Texas Instruments/Honeywell GPS Guidance Package // Proc.IEEE, Position, Location and Navigation Symposium (PLANS'92), 1992. March 22-26. P.298-305.
- 3. Korkishko Yu.N., Fedorov V.A., Feoktistova O.Y. LiNbO₃ Optical Waveguide Fabrication by High-Temperature Proton Exchange // J. Lightwave Technology, 2000. Vol.18 P.562-568.
- 4. **Optical** Gyros and their Application// RTO AG 339, 1999.
- 5. Bohm K., Petermann K., Weidel E., Performance of Lyot depolarizers with birefringent singlemode fibers // J. Lightwave Technology, 1983. Vol.1 - P.71-74.
- *Abstract.* The Optolink's single-axis and three-axis fiber optic gyroscopes are described. The results illustrate the versatility of the technology, showing its potential to meet both the low-cost, compact sized needs of tactical guidance, as well as the very high performance needs of inertial navigation and precision applications. The optical and electronic blocks of closed-loop gyroscopes with integrated optic components are considered.